If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x^2+x)=40
We move all terms to the left:
2(x^2+x)-(40)=0
We multiply parentheses
2x^2+2x-40=0
a = 2; b = 2; c = -40;
Δ = b2-4ac
Δ = 22-4·2·(-40)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-18}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+18}{2*2}=\frac{16}{4} =4 $
| 4(x-6)-5=-41 | | 3(x+4)+14=8 | | 8(x+5)+12=12 | | 2508-(x-0.12x)=0 | | 6(x+11)+12=132 | | 4(x+10)-9=27 | | 1(x+3)=-4 | | 5(x+2)+14=-21 | | 5(x+16)=125 | | 2(x+14)+10=22 | | 2(x+9)+8=10 | | 12=(x/20900+x)x100 | | 2,9x-4=1,4x+8 | | 2508+0,12x=x | | x^2-10x-0.5=150 | | 2508=x-0,12x | | r+–7=–10 | | (150/x)+0.5)*(x-10)=0 | | 3(2+x)=3+3.x | | (150/x)+0.5)*(x-10)=150 | | z+5/8=19/56 | | 9{3+x}=4{3+x} | | m^2+6m-32=0 | | 8x-4+3x+17+17x-23=360 | | m^2+6m+32=0 | | X+17x-23=180 | | 5(3x+1)=-2(x-6)= | | 4r2+15r+7= −1 | | 3x17=4x13 | | 3x17=4x | | 79+18=9x-4 | | (20+3x)4=11 |